

The history of revision change for the specification

Date	Revision	Changes
2022/01/19	A0	New approval
2023/05/05	A1	Add Jumper Spec.

DOCUMENT : CYNP-221-006

0603, Anti-Surge, High Power Chip Resistor

Features / Applications :

- Telecommunication Equipment, Digital Cameras, Watches, Pocket Calculators, Computers, Instruments.
- Excellent surge resistance characteristics
- Halogen Free Epoxy
- RoHS compliant, No RoHS exemption

Electrical Specifications :

Characteristics	Feature		
Power Rating*	1/10W, 1/4 W, 1/3W, 2/5W		
Resistance Values	E-24 & E-96 series		
Resistance Range	1 $\Omega{\sim}$ 10 Ω	>10Ω~10KΩ	
Temperature Coefficient of Resistance(ppm/°C)	±100	±200	
Max. Operating Voltage**	150V		
Resistance Tolerance	±1%(F), ±2%(G), ±5%(J)		
Operation Temperature Range	-55℃ ~ +155℃		

Jumper

Characteristics	Feature
Resistance	Below 50 mΩ
Rated current	1A
Operating Temperature Range	-55°C to 155°C

*Note : For sensor operated at ambient temperature in excess of 70° C, the maximum load shall be derated in accordance with the following curve.

DOCUMENT: CYNP-221-006

REVISION : A1

**Note: Resistors shall have a rated DC or AC(rms.) continuous operating voltage corresponding to the power rating, as calculated from the following formula $V = \sqrt{P \times R}$. If the voltage obtained exceeds the maximum operating voltage, this maximum voltage shall be the rated voltage.

Outline Drawing :

Type Designation :

HPFR08S	-		- 🗆		TF
(1)		(2)	(3)	(4)	(5)

Note :

- (1) Series No.
- (2) Resistance value:

Three digits of number (E-24 Series)

```
100 = 10\Omega
```

```
102 = 1k\Omega
```

Four digits of number (E-96 Series)

```
11R3 = 11.3\Omega
```

- (3) Tolerance (%): F=±1%, G=±2%, J=±5%
- (4) Power Rating: C = 1/10W; 3=1/4W; F=1/3W; I=2/5W;
- (5) TF is total lead free (without RoHS exemption)

DOCUMENT : CYNP-221-006

Characteristics :

Electrical

Item	Specification and Requirement	Test Method			
Temperature	As electrical specifications	Room temperature, Room temperature			
Coefficient of		+100°C			
Resistance(ppm/°C)					
Short Time Overload	△R: ±(2%+ 0.0005Ω)	(1) Preconditioning			
	Jumper: Below 50 mΩ;	(2) Parts must subjected to 2.5X rated			
	Without damage by flashover, spark,	voltage or 2X MAX. Operating Voltage,			
	arcing, burning or breakdown	whichever is less, for 5 seconds.			
Insulation Resistance	Over 100 M Ω on Overcoat layer face up	p (1) Setup as figure 1			
	Over 1,000 M Ω on Substrate side face	(2) Test voltage: 100VDC			
	up	(1) Test time: 60 + 10 / - 0 seconds			
Voltage Proof	△R: ± (2.0%+ 0.0005Ω);	(1) Setup as figure 1			
	Jumper: Below 50 mΩ;	(2) Test voltage: 100VAC(rms.)			
	Without damage by flashover, spark,	(3) Test time: 60 + 10 / - 0 seconds			
	arcing, burning or breakdown				

DOCUMENT : CYNP-221-006

Mechanical

ltem	Specification and Requirement		Test Method	
Lead Solderability	△R: ± (0.5%+ 0.0005Ω)	(1)	(1) Pretest Requirement: All samples shal	
	Jumper: Below 50 mΩ;		be subjected to steam aging for a	
			period of 8 H as a precondition to	
			testing	
		(2)	Lead Solderability 245 \pm 5°C for	
			2 ± 0.5 seconds	
Reflow Soldering	∆R: ± (2.0%+ 0.0005Ω);	(1)	Reflow at 260°C for 10 seconds,	
	Jumper: Below 50 mΩ;		3 cycles, and cool down in still	
	Without distinct deformation in	(2)	Measuring resistance 1 H	
	appearance		after test	
Solder Cycles	△R: ± (2.0%+ 0.0005Ω)	(1)	One Reflow cycle;	
	Jumper: Below 50 mΩ;	(2)	Followed by cool down; then Hand	
	Without distinct deformation in		Soldering: Immersion in molten solder	
	appearance		260°C for 10 seconds	
Vibration Test	△R: ± (0.5%+ 0.0005Ω)	(1)	Preconditioning	
	Jumper: Below 50 mΩ;	(2)	Parts are tested at10Hz to 2kHz at 15g,	
	Without mechanical damage such as		20min,12 times per 3 mutually	
	break		perpendicular directions, total 12H	
Mechanical Shock Test	△R: ± (0.5%+ 0.0005Ω)	(1)	Preconditioning	
	Jumper: Below 50 mΩ;	(2)	Parts are tested at 50 ± 5G, 11ms,3	
	Without mechanical damage such as		shocks per 3 mutually perpendicular	
	break		axes, total 18 shocks	
Flexure Strength	∆R: ± (0.5%+ 0.0005Ω)	Ben	ding value: 2 mm for 10 ± 1 seconds	
	Jumper: Below 50 mΩ;			
	Without mechanical damage such as			
	break			

Endurance

ltem	Specification and Requirement	Test Method	
Thermal cycling	∆R: ± (2.0%+ 0.0005Ω)	(1)	Preconditioning
(Air to Air) Test	Jumper: Below 50 mΩ;	(2)	Parts are tested at-55 \pm 3°C to 125 \pm 3°C
	Without distinct damage in appearance		with 30 min dwell time at each
			temperature, 1min max transition time,
			1000 cycles.
		(3)	Measuring resistance 1 hour after test
Temperature Humidity	∆R: ± (3.0%+ 0.0005Ω)	(1)	Preconditioning
Test	Jumper: Below 50 mΩ;	(2)	Soldering heat, Flexure strength
	Without distinct damage in	(3)	Parts are tested at 1,000 H at 60° C ±
	appearance		2°C, 90-95% RH
Biased Humidity	_R:±(3.0%+0.0005Ω)	(1)	Preconditioning
Test	Jumper: Below 50 mΩ;	(2)	Parts are tested at 1,000 H at 60 \pm 2°C,
	Without distinct damage in appearance	90-	95% RH with 10% of operating power
Load Life (Endurance)	∆R: ± (2.0%+ 0.0005Ω)	(1)	Preconditioning
Test (Power Cycling)	Jumper: Below 50 mΩ;	(2)	Parts must be cycled at 70°C at full
	Without distinct damage in		rated power for 1.5hr power on
	appearance	(3)	and 0.5hr power off for 1000 H
Load Life (Endurance)	∆R: ± (2.0%+ 0.0005Ω)	(1)	Preconditioning
Test	Jumper: Below 50 mΩ;	(2)	Parts are tested at a temperature of 125
	Without distinct damage in		± 2°C and rated power (or maximum
	appearance		rated temperature) for 1,000 H
HAST(Autoclave)	∆R: ± (3.0%+ 0.0005Ω)	(1)	Preconditioning
	Jumper: Below 50 mΩ;	(2)	Soldering heat
	Without distinct damage in	(3)	Flexure strength;
	appearance	(4)	Part are tested for 48 H, 121ºC, 100%
			R.H., 29.7 psia
Terminal Strength	∆R: ± (0.5%+ 0.0005Ω)	(1)	Thrust:17.7N;
	Jumper: Below 50 mΩ;	(2)	Times: 30 seconds
	Without mechanical damage such as		
	break		

*Preconditioning 125*24H ${\sim}$ 85°C / 85%RH*168H ${\sim}$ 3 reflow cycles

Pulse test

ltem	Specification and Requirement		Test Method (JIS 5201)
Single pulsed	△R: ± 1.0%	(1)	Preconditioning
operational life	Without distinct damage in	(2)	Applied for the single pulse and its
	appearance		duration is 1us to 10s
		(3)	The maximum power load is shown
			in Table 1
Continuous pulsed	△R: ± 1.0%	(1)	Preconditioning
operational life	Without distinct damage in	(2)	Applied for the continuous pulse,
	appearance		its one cycle: ON time is 1us to 10s
			(ti), OFF time is 10*ti.
		(3)	Test cycles: 1000 cycles
		(4)	The maximum power load is shown
			in Table 2

Single Pulse (Table 1)

Continuous Pulse (Table 2)

Recommend Land Pattern Dimensions :

А	0.8~1.0
В	2.4~2.6
C	1.0~1.2
	I Init · mm

Packaging :

Tape packaging dimensions

Remark: Leader tape length≧30 cm(150 Hollow carrier cavity)

DOCUMENT: CYNP-221-006

Reel dimensions

Peel force of top cover tape

The peel speed shall be about 300 mm/min.

The peel force of top cover tape shall be between 0.1 to 0.7 N.

Numbers of taping : 5,000 pieces /reel

The following items shall be marked on the reel.

- (1) Type designation.
- (2) Quantity
- (3) Manufacturing date code
- (4) Manufacturer's name

DOCUMENT: CYNP-221-006

Care Note :

Care note for storage

- (1) Chip resistor shall be stored in a room where temperature and humidity must be controlled. (temperature 5 to 35° C, humidity 30 to 80% RH) However, a humidity keep it low, as it is possible.
- (2) Chip resistor shall be stored as direct sunshine doesn't hit on it.
- (3) Chip resistor shall be stored with no moisture, dust, a material that will make solderability inferior, and a harmful gas (Chloridation hydrogen, sulfurous acid gas, and sulfuration hydrogen).

Care note for operating and handling

- (1) It is necessary to protect the edge and protection coat of resistors from mechanical stress.
- (2) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (3) Resistors shall be used with in rated range shown in specification. Especially, if voltage more than specified value will be loaded to resistor, there is a case it will make damage for machine because of temperature rise depending on generating of heat, and increase resistance value or breaks.
- (4) In case that resistor is loaded a rated voltage, it is necessary to confirms temperature of a resistor and to reduce a load power according to load reduction curve, because a temperature rise of a resistor depends on influence of heat from mounting density and neighboring element.
- (5) Observe Limiting element voltage and maximum overload voltage specified in each specification
- (6) If there is possibility that a large voltage (pulse voltage, shock voltage) charge to resistor, it is necessary that operating condition shall be set up before use.